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Across all sensory modalities, first-stage sensory neurons are an in-
formation bottleneck: they must convey all information available for
an animal to perceive and act in its environment. Our understanding
of coding properties of primary sensory neurons in the auditory and
visual systems has been aided by the use of increasingly complex,
naturalistic stimulus sets. By comparison, encoding properties of pri-
mary somatosensory afferents are poorly understood. Here, we use
the rodent whisker system to examine how tactile information is
represented in primary sensory neurons of the trigeminal ganglion
(Vg). Vg neurons have long been thought to segregate into func-
tional classes associated with separate streams of information pro-
cessing. However, this view is based on Vg responses to restricted
stimulus sets which potentially underreport the coding capabilities of
these neurons. In contrast, the current study records Vg responses to
complex three-dimensional (3D) stimulation while quantifying the
complete 3D whisker shape and mechanics, thereby beginning to
reveal their full representational capabilities. The results show that
individual Vg neurons simultaneously represent multiple mechanical
features of a stimulus, do not preferentially encode principal compo-
nents of the stimuli, and represent continuous and tiled variations of
all available mechanical information. These results directly contrast
with proposed codes in which subpopulations of Vg neurons encode
select stimulus features. Instead, individual Vg neurons likely over-
come the information bottleneck by encoding large regions of a
complex sensory space. This proposed tiled and multidimensional
representation at the Vg directly constrains the computations per-
formed by more central neurons of the vibrissotrigeminal pathway.
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Sensory neuroscience aims to quantify how neurons encode and
process fundamental physical stimuli: photons, pressure waves,

chemicals, and mechanical forces. A common experimental ap-
proach is to use controlled, reduced, and repeatable stimulus sets
to elicit consistent neural responses that can be averaged to reduce
trial-to-trial variability (1–6). This method lends itself to a de-
scription of neural coding in which neurons are tuned to a small
number of stimulus features (7) and to a categorization of neurons
into functional classes (8) based on their differential responses to
those preselected features of the stimuli (1, 3, 5, 9–12). A problem
with this approach is that results are constrained by stimuli that are
typically categorical and significantly underrepresent the stimulus
space to which the neurons respond. It is thus almost inevitable
that the neurons will, in turn, exhibit simple, low-dimensional
tuning curves and categorical response types. Descriptions of
neural representations of stimuli therefore remain incomplete.
The rodent whisker system is one of the premier models for

studying tactile processing and cortical function (13). During nat-
ural exploration, rodents move their whiskers in rhythmic, non-
repeatable three-dimensional (3D) trajectories (14, 15) generating
complex, continuously varying patterns of tactile input. However,
most descriptions of vibrissal-responsive primary sensory neurons
in the trigeminal ganglion (Vg) are based on experiments that use

reduced stimulus sets in which variations in the presented stimuli
are discrete, involving only a few features or limited spatial direc-
tions, small in dynamic range, or presented only along the neuron’s
preferred direction. Recent work in awake, whisking animals has
employed a more continuous stimulus set, but these studies have
been restricted to a two-dimensional (2D) analysis of whisker
motion (16–19).
Here, we take inspiration from studies of the visual system that

employ increasingly complex stimulus sets (20, 21) and apply to
the whiskers a manual, naturalistically varying stimulus set
designed for a rich exploration of the tactile stimulus space. The
stimuli employed here span ranges similar to those observed in
naturally behaving animals (22, 23) (SI Appendix, Fig. S2). We
introduce a stereo-vision 3D whisker imaging technique, apply a
model of 3D whisker mechanics (24), and implement recently
developed statistical modeling techniques (25, 26) to character-
ize the 3D input space available to the whisker system and the
consequent response properties of Vg neurons.
When characterized through the expanded naturalistic stim-

ulus set employed here, the response properties of Vg neurons
reveal a fundamentally different encoding structure than gener-
ally appreciated. We find that Vg neurons are broadly tuned
across multiple stimulus features, including force, bending mo-
ment, and rotation, as well as stimulation direction. These neu-
rons do not represent select mechanical features, nor do they
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represent the structure of the leading principal components that
span a low-dimensional subspace of the mechanical stimuli space.
Importantly, these diffuse representations of mechanical stimuli
continuously tile the stimulus space used here, suggesting that
primary sensory neurons possibly use a dense or near dense coding
scheme to represent tactile stimuli. Thus, Vg neurons do not
segregate into functional classes that convey specialized feature
information to more central structures (4, 27, 28).
An important lesson conveyed by these results is the crucial fact

that descriptions of the response properties of sensory neurons are
fundamentally constrained by the complexity and extent of the
stimulus sets used to probe them, and that stimulus sets that
underrepresent the complexity and extent of natural stimuli can
lead to incomplete, if not incorrect, descriptions of the encoding
properties of these neurons. The stimuli used in the present ex-
periments are not exhaustive of all possible stimuli explored during
natural, active exploration; in particular, we do not probe the realm
of fine-scale temporal dynamics that arise during interactions with
textured objects. Even within these limitations, the results pre-
sented here indicate that individual Vg neurons represent complex
features of 3D deformations that have been untested until now.

Results
Acquisition of 3D Stimulus Information. We recorded 78 whisker-
responsive Vg neurons in 22 anesthetized rats during manual
tactile stimulation of single whiskers. During stimulation, high-
speed video (300 or 500 fps) captured whisker motion in two
views (Fig. 1A). Following previous methods (29), a handheld
graphite probe was used to repeatedly deflect the whisker at two
to three different distances along its length (Fig. 1C) in eight
cardinal directions (Fig. 1D). Because of the variable nature of
the manual stimulation, we do not characterize deflections by the
specific value of arclength of probe contact or the direction of
deflection. Instead, we classify each deflection into an arclength
group and direction group via unsupervised clustering methods
(SI Appendix, Extended Methods: Identification of direction and
arclength groups). In addition, both stimulation speed and the
subsequent contact duration varied across trials. We attempted
to deflect the whisker at two discrete speeds, but intrinsic stim-
ulation variability resulted in a unimodal distribution of stimu-
lation speeds (median probe speed = 19.6 mm/s, interquartile
range [IQR] = [11, 34] mm/s; median contact duration = 147 ms,
IQR = [95, 251] ms). Distributions of stimulus parameters cal-
culated post hoc from video data across all experiments and
contacts are shown in SI Appendix, Fig. S2.
Video and neural data were recorded for an average of ∼500 s

per neuron, with an average of 684 whisker deflections across all
conditions per whisker. Whiskers were tracked in both camera
views (30); the 3D whisker shape and stimulus contact point were
reconstructed (Fig. 1B) by registering the tracked whisker into a
common 3D reference frame (SI Appendix, Extended Methods:
3D whisker reconstruction). The code to register 3D whiskers is
hosted at https://github.com/SeNSE-lab/VG3D-merge. Mechan-
ical models (24) were used to compute forces and moments at
the whisker base for each video frame (Fig. 1E).
In the anesthetized animal, exerting a force on a whisker causes

the whisker to bend and the follicle to rotate within the mystacial
pad (29). This rotation generates a force between the follicle and
surrounding tissue that may contribute to Vg responses. Because
the mechanical properties of the follicle–cheek interface are un-
known, we used the whisker’s angular rotation as it emerged from
the cheek (Fig. 1E and SI Appendix, Fig. S1) as a proxy for the
force of the tissue on the follicle. All signals, including spike times,
were interpolated and binned at 1 kHz.
The variability inherent in manual deflections precludes com-

paring time-locked responses across trials. However, each manual
deflection evolved similarly over time as would occur during re-
peated whisks against an object. This temporal structure lends itself

to “time-normalized” analyses in which stimulation durations are
normalized to one (16, 28).

Most Neurons Are Jointly Tuned to Direction and Location of
Stimulation along the Whisker Arclength. Previous studies demon-
strated that the Vg firing rate is strongly influenced by both de-
flection direction (2, 10, 12, 31–33) and the arclength of stimulus
contact (4, 28). However, these studies have not quantitatively
examined the joint effect of these parameters. We quantified the
effects of simultaneous changes in both arclength of contact (two
or three groups) and direction (eight groups) (see SI Appendix,
Extended Methods: Identification of direction and arclength groups
for details on group definitions). For each neuron, we computed
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Fig. 1. Acquisition of 3D stimulus information. (A) Schematic of experi-
mental setup. A tungsten electrode records activity from a Vg neuron as
manual deflections of a single whisker are monitored with two high-speed
cameras. (B) Example 3D reconstruction of a whisker. Mechanics are calcu-
lated in whisker-centered coordinates based on whisker shape changes
(bending; light purple). Rotational features are calculated based on changes
in base segment emergence angles (light purple, Δθ in the x-y plane, Δϕ in
the x-z plane) compared to rest (black whisker). (C) Deflections were applied
at two or three distances along the whisker arclength; whisker arclengths
were normalized to one and contacts sorted into three “distance groups”:
proximal (P), middle (M), and distal (D). A histogram of the number of
contacts at a given arclength is shown across all neurons. When only two
distinct clusters were found for a given whisker, the middle group was
omitted and is thus underrepresented. (D) Deflections were applied in ap-
proximately eight directions in the plane perpendicular to the whisker’s
primary axis and sorted into eight “direction groups.” Trajectories described
in terms of the two emergence angles are shown for all deflections of an
example whisker; the color indicates the assigned direction group. Qualita-
tively distinct groups are observed for this example and for all whiskers. (E)
Traces of moments (orange; Mx ,My ,Mz), forces (cyan; Fx , Fy , Fz), rotation
angles (magenta; Δθ,Δϕ), and the spike train observed for three successive
deflections are shown for an example whisker/neuron pair. (Scale bars: 0.1
μNm, 0.5 μN, and 5°, respectively.)
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the average firing rate across many deflections for each arclength/
direction combination and used it to compute a directional se-
lectivity index (DSI) defined as (1 − σ2), where σ2 is the direc-
tional circular variance (34) (SI Appendix, Extended Methods).
The results of this analysis are shown in Fig. 2 A–D for one

example neuron. This neuron’s firing rate increased as stimulation
became increasingly proximal (Fig. 2 A and C; two-way ANOVA
F = 509 main effect of arclength, P < 0.001; Tukey’s post hoc test
P < 0.05). The neuron’s preferred direction was near 225° (Fig. 2 B
and C; F = 305 main effect of direction, P < 0.001; Tukey’s post
hoc test: P < 0.05 for 22/28 multiple comparisons), and it exhibited
a moderate DSI (0.54 for proximal stimulation, 0.64 for distal
stimulation) (Fig. 2D). For each cell, the DSI was calculated by
bootstrapping; we randomly sampled half of all contacts without
replacement for 1,000 replicates to compute the mean DSI and its
SD. The example neuron was more directionally tuned for distal
contacts (Student’s t test: t = 123, P < 0.001). Notably, multiple
combinations of arclength and direction can result in the same
firing rate (Fig. 2C).
These results are generalized over all neurons in Fig. 2 E and F.

Of the 78 recorded neurons, 75 had distinguishable arclength and
direction groups. Although all 75 neurons exhibited significant
direction tuning (two-way ANOVA P < 0.05), the DSI was con-
tinuously and uniformly distributed across all neurons (Fig. 2F;
Kolmogorov–Smirnov test: n = 75, D = 0.068, P = 0.88), revealing
a continuum of directional tuning strength across the population.
Nearly all neurons (72/75) were also tuned for arclength, with
proximal stimulation typically evoking stronger responses.
Importantly, the firing rate of most neurons (68/75, two-way

ANOVA, P < 0.05) was modulated by both direction and
arclength. Fig. 2G shows the change in DSI for distal compared to

proximal stimulations for the 68 cells that were significantly tuned
for both direction and arclength. Cells with (DSIdistal –DSIproximal)
greater than zero were more directionally tuned for distal contacts
(28/68 neurons). Note that approximately equal numbers of neu-
rons become more/less directionally tuned as stimulation became
increasingly distal. This result indicates that the arclength of stim-
ulation has no consistent effect on direction selectivity, and thus,
there is no clear evidence to support increased angular sensing
resolution for either proximal or distal stimuli.
The results of Fig. 2 indicate that the more naturalistic, complex

stimulation used here can recapitulate classical Vg responses ob-
served during controlled ramp-and-hold stimulation (3, 9, 10).
Fig. 2 also accentuates an underappreciated characteristic of Vg
responses: when direction and arclength covary continuously and
simultaneously, as during natural contact, Vg firing rate is governed
jointly by both parameters. These results suggest that a single
neuron’s response cannot unambiguously encode either of these
two stimulus features and that a population readout is required to
disambiguate.

Temporal Patterns of Spikes during Contact Are Complex and Direction
Dependent. The previous analyses characterized average Vg firing
rates, but detailed temporal features of Vg spike patterns are
important in shaping central responses (35). We exploited vari-
ability across individual deflections to quantify the dependencies
between temporal firing pattern and deflection direction across
cells (Videos S1–S3). Two examples are shown in the time-
normalized histograms of Fig. 3A. Cell 1 exhibits strong changes
in average firing rate with stimulation direction, with no change in
temporal firing pattern. In contrast, the firing pattern of Cell 2
varies significantly with stimulation direction; some directions
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Fig. 2. Most neurons have firing rates that correlate both with arclength of contact and deflection direction: (A–D) An example neuron whose firing rate is
modulated by both arclength and direction. In A and B, boxes are median ± 1 quartile and capped lines are median ± 2 quartiles. (A) Firing rate increases as
stimulation becomes more proximal (*P > 0.001). (B) Firing rate modulation by direction group. The DSI for this neuron is 0.72. (C) Average firing rate and
directional selectivity can depend on the arclength of contact. The average firing rate of the example cell is shown as a function of deflection direction for
both the proximal and distal arclength of contact. The lines indicate the average firing rate for all deflections in each group, with line thickness indicating ±
SEM. Note that for this neuron, the directional tuning curve is broader for more proximal stimulation, indicating a weaker directional tuning for more
proximal deflections. (D) Quantification of the DSI for the example cell. Bar is mean ± SD (*P < 0.001). (E) Number of cells with significant effects of arclength,
direction, and their interaction on firing rate (two-way ANOVA). Red indicates significant effects. (F) Vg neurons range from not at all directionally mod-
ulated (DSI = 0) to very strongly modulated (DSI = 1). (G) Directional tuning strength is modulated by arclength of contact for most cells. Cells with positive
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show a strong onset response, others a strong offset response, and
yet others show neither.
The center plots in the two examples of Fig. 3A show time-

varying firing rates as grayscale heat maps for each direction,
with the times of maximal firing rate (“peak times”) indicated by
yellow asterisks. The peak times for all cells and directions are
shown in Fig. 3B. Each cell has eight peak times, one per di-
rection. Cells are ordered by peak time variance; cells with little
directional modulation of peak time are at the top and those with
strong modulation at the bottom. Fig. 3C aggregates data across
neurons and directions; peak times are most likely to occur at
onset, less likely at offset, and least likely in the middle of de-
flection. The influence of deflection direction on the peak time
was quantified with the DSI of the peak time; Fig. 3D shows that
the DSI of peak time is normally distributed (Shapiro test: n =
77, W = 0.98, P = 0.49). Deflection direction has a moderate
influence on spiking patterns, with few neurons very strongly
(DSI ≅ 1) or very weakly (DSI ≅ 0) modulated.
Vg neurons are frequently classified as rapidly adapting (RA) or

slowly adapting (SA) based on their response to ramp-and-hold
stimulation (3, 9–11, 32). To perform a similar analysis with the
present data, we introduce an “adaptation index” (AI) as the log
ratio of the firing rate during the first 10 ms of contact to the

average firing rate. The AI is calculated separately for each di-
rection group. An AI of zero indicates no difference between
onset firing rate and mean firing rate; a strongly negative AI in-
dicates almost no firing during onset. The AI for each deflection
direction of Cell 2 is shown in Fig. 3E and aggregated for all
neurons and directions in Fig. 3F. Cells are ordered by the mean
value of AI across all directions. Note that cells which spike
preferentially at onset (Top, red cells, “RA-like”) transition
smoothly into cells that spike less during onset than average
(Bottom, blue cells; “SA-like”). This smooth transition is main-
tained if only the preferred direction (PD) of each neuron is
considered (Fig. 3F, right column).
Consistent with previous studies (33), Vg adaptation properties

often depend strongly on deflection direction; some cells exhibit
positive AI for some deflection directions and negative AI for
others. Previous work classified each neuron into an “adaptation
category” based on the number of directions in which it responded
in an RA-like manner (33). Similarly, we defined a neuron to be
RA-like for a given direction if the AI for that direction is positive.
The number of directions for which a neuron responds in this RA-
like manner is termed its “adaptation category”; cells are almost
evenly distributed across adaptation category (Fig. 3G).
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Neural Responses Are Correlated with Many Stimulus Components,
but These Stimulus Components Are Tightly Correlated. The 3D
whisker shape and rotation measured from video can be used to
model the mechanical signals at the whisker base. Decomposing
the forces and moments into their x, y, and z components yields six
quantities, while the two angular rotations, Δθ and Δϕ, are proxies
for the forces associated with the follicle rotating within the tissue.
These eight quantities and their derivatives form a total of 16
dimensions that completely describe the whisker’s mechanical
state at its base. A tuning map from this 16-dimensional input
space onto the average firing rate of each neuron quantifies the
neural response during contact. The full tuning map for each
neuron can be projected onto each individual input dimension;
some of these one-dimensional tuning maps (tuning curves) are
shown in Fig. 4A for an example cell, and additional 2D tuning
maps are shown in Fig. 4B. The total number of spikes in these
histograms is 11,010; bins in which fewer than 10 observations
occurred were omitted from the maps.
Generally, tuning curves for all cells showed structure in most

of the one-dimensional projections: the firing rates of most Vg
neurons correlate with most individual parameters. However,
these correlations could result from intrinsic covariation between
individual stimulus components—for instance, My covaries with
dFz, where d is the distance from the whisker base to the contact
point. To quantify these covariations, we performed principal
component analysis (PCA) on the input space for each whisker
(with and without derivatives); the cumulative percent variance
explained is shown in Fig. 4C for all whiskers.
The PCA allows us to investigate whether neural responses en-

code the eigenvectors, that is to say, the covariance structure of the
mechanical stimulus space. Instead of using the physical quantities
as independent variables, tuning maps can also be obtained along
stimulus space directions determined by the principal components
(PCs) of the input space. Example low-dimensional tuning maps
for the two first PCs are shown in Fig. 4D for the same neuron as in
Fig. 4B. Derivatives are included in the PCA decomposition; no-
tably, PCA eigenvectors tend to represent combinations of either
physical quantities or their derivatives but rarely mix both (SI
Appendix, Fig. S3).
We next use PCA to ask whether the deformation of different

whiskers across the pad results in exploration of similar or dis-
similar subspaces of the overall mechanical space; that is, are all
whiskers constrained to explore particular combinations of me-
chanical variables and their derivatives? If so, such constraint
would likely be due to shared biomechanical and morphological
properties across whiskers. Because all physical quantities are
measured independently of the whiskers’ orientation on the head
(36), we can quantify the similarity between the leading low-
dimensional PC representations of stimuli space across different
whiskers. We used a similarity metric (Si) that generalizes the dot
product to measure the angles between two subspaces rather than
the angle between two lines (SI Appendix, Extended Methods:
Similarity metric). This approach is formally known as “canonical
angles analysis” (Si = cos(ξi)) (37) and resembles the “subspace
overlap” used in previous work (38). Lines are one-dimensional;
there is only one angle between two lines. In general, there are as
many angles, or similarity metrics Si, as dimensions in the subspaces
being compared. A value of Si = 1 corresponds to two parallel lines,
one within each subspace, indicating high similarity in orientation
between the spaces. A value of Si = 0 corresponds to orthogonal
directions. Multiple angles between subspaces are ordered by de-
creasing Si (i.e., increasing ξi).
We quantified input space similarity across whiskers by com-

puting Si, i = 1,2,3 for pairwise comparisons between all stimulated
whiskers based on the subspaces spanned by the first three PCs for
each whisker (Fig. 4E). Because the applied stimulation varied with
each experiment and because the mechanical properties of each
whisker are unique, the explored mechanical stimulus space is also

unique, even for experiments on whiskers that have the same row
and column identity. Most pairwise comparisons were found to be
similar: Si > 0.82> 0.54> 0.05 for 95% of the three leading angles.
These values identify similarities across two of the three dimen-
sions; weak clustering occurs only for the third canonical angle.
This result implies substantial similarity of the relevant input space
across whiskers and allows us to compare neural tuning properties
across neurons innervating different whiskers.

Generalized Linear Models Reveal Encoding of Rotation and Distributed
Tiling of Explored Stimulus Space. The preceding sections have shown
that Vg neurons encode multiple stimulus features and that stim-
ulus features themselves are strongly correlated. The one- and two-
dimensional tuning maps of Fig. 4 A and B provide intuition for the
neural representation of select stimulus features but fall short of
describing the full neural response to the presented stimuli. A full
description would require knowing the average firing rate in re-
sponse to any arbitrary point in the stimulus space and thus fitting a
tuning histogram such as those in Fig. 4A to the full 16-dimensional
stimulus space. This goal cannot be achieved by systematic and
exhaustive exploration and requires a modeling approach.
We therefore implemented a recent formulation of generalized

linear models (GLMs) (25) that allows for multiple input filters
and thus for the activity of modeled neurons to be triggered by
inputs in multiple directions within the stimulus space. All models
were fit with three filters, each defined in the 16-dimensional input
space (seeMethods and SI Appendix, Fig. S4). Only stimulus values
at the current time bin were accessible to the models, which in-
cluded no input history. Spike history terms were omitted from the
model because their inclusion frequently resulted in the “runaway
firing” of model neurons (see Methods). A parametric cylindrical
nonlinearity (five parameters) was applied to each term in the sum
of the three filters (see Methods), bringing the number of model
parameters to [ 16 + 5( )p3] = 63 per neuron; overfitting was min-
imized via 10-fold cross-validation.
As illustrated for the example neuron in Fig. 5A, we used the

models to predict a time-varying spike rate with millisecond reso-
lution, then smoothed the observed spike train with a Gaussian
kernel whose SD σ was varied exponentially from 2 to 512 ms, and
finally compared the predicted rate to the smoothed rate for each
value of σ. The Pearson correlations comparing the observed and
predicted rates are shown in Fig. 5B; correlations are calculated
only during contact periods. On average, models best predicted the
observed spike rate for σ = 32 ms, but for many neurons, high
prediction accuracies were achieved for σ as short as 2 ms. More-
over, performances achieved with σ = 16 and 8 ms were statistically
indistinguishable from that achieved for σ = 32 ms (Tukey’s post
hoc test). The relationship shown in Fig. 5B is nonmonotonic;
model performance drops as the value of σ increases, indicating that
the models accurately predict high-resolution temporal structure in
the spike trains rather than fitting the average spike rate. The
median correlation value was 0.69 (IQR = [0.55, 0.81]) for σ = 32
ms, with a minimum = 0.08 and a maximum = 0.91.
To determine how much information is gained from the full 3D

whisker shape compared to a 2D projection (Fig. 5 C and D), the
3D whisker shape was projected into the top camera view. The
four mechanical variables associated with contact, {M,Fx,Fy,Δθ},
were computed using an established 2D model (24, 39). We
mapped this eight-dimensional input space (including derivatives)
onto the average firing rate of each neuron and, as in the 3D case,
modeled each map using a GLM with three filters. A total of 70
neurons were fit with both 2D and 3D models. We again found
that the accuracy of firing rate prediction was nonmonotonic with
the value of σ used to smooth the observed spike trains. For σ = 32
ms, 2D model performance was significantly worse than that of 3D
models (Wilcoxon signed-rank test, W = 51.0, P < 0.001; median =
0.48, IQR = [0.37, 0.60]). When the 3D model for a given neuron
is compared with its 2D counterpart, nearly all models (60/70)
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perform better with 3D information (Fig. 5D). The median perfor-
mance increase from 2D to 3D was 29.8% (IQR = [13.0%, 73.9%]).
In order to determine the relative contribution of each input

component to firing rate prediction, we performed a dropout
analysis in which access to information was increasingly restricted
(Fig. 5E). For these analyses, correlations were computed using only
the σ = 32 ms smoothed rate. Models without derivative informa-
tion or rotation information perform significantly worse than the
full model (Wilcoxon signed-rank test, W = 17, P < 0.001, median =
0.61, IQR = [0.52, 0.72]; W = 209, P < 0.001, median = 0.55, IQR =
[0.43, 0.69], respectively), indicating that these mechanical quanti-
ties are important for firing rate prediction.
We then asked how well models performed when given access to

only one class of inputs: moments, forces, rotations, or derivatives
(Fig. 5E). All subsets have access to deflection direction, as the
relative contribution of the three spatial components can be used
to infer direction. All models with access to only one class perform
significantly worse than the full model (Wilcoxon signed-rank
test, P < 0.001). Models with only rotation components perform
only slightly less accurately than the full models (median = 0.68,

IQR = [0.52, 0.80], W = 599), indicating that a majority of the
variance in firing rates is accounted for by the rotational compo-
nents of the input. In this anesthetized preparation, the rotational
components are indicative of the force the skin exerts on the fol-
licle. In contrast, models with access to only derivatives perform
worst of all dropout models (median = 0.47, IQR = [0.36, 0.54],
W = 32), while those with access to just moments or forces perform
moderately well (median = 0.49, IQR = [0.37, 0.64], W = 31;
median = 0.53, IQR = [0.40, 0.67], W = 24). The percent differ-
ence (Rsubset − Rfull)=(Rfull) quantifies whether the loss of either
rotation or derivative information is detrimental on a per neuron
basis. The results aggregated over neurons (Fig. 5G) indicate that
some neurons are more amenable to modeling than others and
that force and moment both carry important but incomplete in-
formation about the response, while rotational variables are the
most informative.
Unsurprisingly, models that include derivative information ex-

hibit improved temporal precision. Specifically, models that in-
clude derivatives perform better than those that do not when their
predictions are compared to spike rates smoothed with σ < 64 ms
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(Wilcoxon signed-rank test, P < 0.001, Bonferroni corrected for all
kernel sizes tested, Fig. 5H). Moreover, identifying the value of σ
for which the firing rate of each neuron is best predicted shows
that most neurons are best predicted at shorter timescales when
derivative information is included (Wilcoxon signed-rank test, n=
74, W = 0, P < 0.001, Fig. 5I).
Lastly, we analyzed the coefficients that characterize the GLM

filters. These coefficients are organized as three vectors in the
16-dimensional input space; these vectors define a 3D subspace that
can be interpreted as a complex, three-dimensional “mechanical
receptive field” for each neuron. This receptive field cannot be vi-
sualized using standard tuning curve analyses, but it provides a more
complete description of a neuron’s response properties and allows
us to ask two important questions. First, do these neuron-specific
mechanical receptive fields reflect the low-dimensional structure
(i.e., the PCs) of the stimulus space associated with the manual
deflections used here? And second, how do the mechanical re-
ceptive fields of different neurons compare to each other?
Both of these questions can be addressed by computing again the

similarity metric Si based on canonical angle analysis (37). This
computational approach is schematized in Fig. 6. For each neuron,
we calculated the similarity between the subspace that defines its
mechanical receptive field and the subspace that defines the rele-
vant stimuli determined by the deflections applied to the whisker it
innervates. Surprisingly, the neural representations are not strongly
similar to the PCs: S1,2,3 = [0.36 ± 0.13, 0.14 ± 0.07, 0.03 ± 0.03].
Fig. 7A shows the similarity metrics for all cells, ordered by de-
creasing similarity. Corresponding histograms are shown in Fig. 7B.
Thus, Vg neurons do not seem to preferentially encode the me-
chanical stimuli that lie in the subspace spanned by the leading
eigenvectors.
We next calculate the similarity between the neural represen-

tations of different neurons to determine if there are identifiable
“groups” or “classes” of neurons that share similar representations.
The existence of functional cell classes would be indicated by
subpopulations of neurons that are similar to other neurons within
their class and dissimilar to those outside their class. Pairwise
comparisons are shown in Fig. 7C and the resulting histograms in
Fig. 7D.
In contrast to multiple previous studies that have found

distinct Vg cell classes (4, 11, 19, 28, 40, 41), the neural representation
subspaces overlap only moderately: S1,2,3 = [0.74 ± 0.12, 0.45±
0.15, 0.14 ± 0.11], and do not cluster. The lack of clusters and
the lack of bimodal distributions in the histograms of the similarity
metrics indicate that Vg neurons should not be grouped into classes
of cells that represent similar mechanical information.
Thus, the neural representations of Vg neurons do not pref-

erentially cover the relevant subspaces of input space spanned by
the leading PCA eigenvectors. Moreover, mechanical receptive
fields corresponding to different neurons overlap only moder-
ately and do not cluster. This suggests that as a population, Vg
neurons implement a dense uniform covering of the mechanical
input space (SI Appendix, Fig. S4).

Discussion
Coding properties of Vg neurons can be fully quantified only if
the stimuli employed span the extent of the full stimulus space.
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Fig. 5. Statistical modeling of Vg neurons. Dots indicate individual models,
bars are medians, and boxes are median ± 1 quartile unless indicated. For all
panels except B, Pearson correlation values are used to compare predicted
firing rate to observed rate smoothed with a Gaussian kernel with σ = 32 ms.
(A) Observed spiking (black vertical lines) is converted to estimated rate by
smoothing with a Gaussian kernel (green, light to dark: σ = [4, 16, 64] ms).
Three smoothing resolutions are shown, but nine are computed. The pre-
dicted rate is shown in purple. (Inset) Single deflection. (B) Correlations for
GLM-predicted rates compared to the observed spike rates smoothed with
Gaussian kernels with increasing σ (light to dark). (C) Pearson correlation
values for models with access to either 2D or 3D physical information. (D)
Pairwise comparisons of performance for models based on 2D or 3D physical
information. (E) Performance of models with access to subsets of the full
input space. Asterisk indicates significant difference from performance of

full model (Wilcoxon signed-rank test, P < 0.05). (F) Percent difference be-
tween the performance of the full model and the model without access to a
subset of inputs, (Rsubset − Rfull)=(Rfull), aggregated over all neurons. (G) Com-
parison of performance of models with access only to inputs of a single class.
(H) Comparison of performance of models with and without access to deriv-
atives for rates smoothed with increasing values of σ. Shown are means ±
SEM. (I) Models with access to derivatives (gray) better predict rates
smoothed with lower values of σ than those without (yellow).
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Without claiming to have achieved complete presentation of a
naturalistic stimulus space that incorporates the full spatial and
temporal structure of natural objects available to an awake an-
imal, the present work takes a significant step toward a more
complete understanding of vibrissotactile encoding by relating
neural activity to whisker motion in three spatial dimensions.
Manual deflection allows the stimulus space to be probed with a
previously unexplored degree of variability. This framework
allows us to show that individual Vg neurons simultaneously
encode multiple features of the stimulus, that adaptation
properties do not categorize into RA or SA groups, and that
neural representations overlap and tile the stimulus space.
Together, these results suggest a view of Vg coding in which single
stimulus features cannot be determined unambiguously by the
activity of a single Vg neuron; instead, features are represented
across a population and may be extracted by more central
neurons that integrate information across many Vg neurons.
This view contrasts with proposed population codes that seg-
regate behaviorally relevant quantities into separate neural
classes (11, 28, 40, 42).

Classical Vg Tuning Curves Are “Slices” of Possible Neural Responses
to Complex Stimuli. Previous studies used restricted stimulus sets
that vary only a few stimulus dimensions while holding others
constant (1–3, 7, 9, 10, 32). The Vg responses shown in these
earlier studies can be considered “slices” through multidimen-
sional tuning maps that more completely describe responses to
complex stimuli.
In agreement with earlier work (9, 10, 28, 33), our results show

that both arclength of contact and deflection direction strongly
influence average firing rate. Here, we further show that Vg neu-
rons are jointly tuned to both stimulus features, that is, arclength
and direction cannot be disambiguated based on the average firing
rate of single Vg neurons (Fig. 2). We use extended GLMs to
describe these more complex tuning maps from which general
coding principles can be inferred. For instance, the predictive
performance of these models decreases when derivatives of me-
chanical features are omitted as inputs (Fig. 5E), consistent with
earlier work showing joint tuning to features corresponding to
stimulus “amplitude” and “velocity” (1–3, 7, 31, 32).
Recent studies based on 2D analyses of whisker shape under

deflection have shown that Vg responses are more accurately
described in terms of mechanical rather than geometric variables
(18, 19, 29), but the 2D work omits crucial information about a
third deflection direction that modulates the components of the
forces applied at the base of the whisker. The Vg responses
shown in these 2D studies can thus also be considered as “slices”
or projections of responses to the 3D stimulation used here. The
marginal neural responses to individual features of the stimulus
obtained here recapture observations from previous work;
however, a more complete picture emerges when responses to
more multidimensional stimuli are analyzed without marginal-
izing to individual stimulus features.

Vg Neural Responses Tile the Mechanical Space. Vg responses are
tuned to multiple features of the 3D mechanical stimulus space
(Fig. 5); statistical models indicate that their activity is primarily
driven by the follicle’s rotation in the skin rather than by whisker
bending. The predictive performance of the Vg models degrades
if information about rotation is omitted but does not degrade if
information about bending is omitted. Remarkably, models that
have access only to bending information still perform moderately
well, providing evidence for broad and diffuse tuning to
mechanical features.
Given the relationship between bending and rotation (SI Ap-

pendix, Fig. S1), it is possible that neurons encode latent me-
chanical features that subsume bending and rotation. PCs of the
stimulus space represent such latent combined features. How-
ever, the neural representation of stimuli that maximally triggers
Vg activity does not align strongly with the PCs of the stimuli
(Fig. 7); neurons do not encode linear combinations of stimulus
features along high variance dimensions. Preferential encoding
along dimensions that differ from those that characterize the
variance structure of the stimuli is consistent with a diffuse tiled
representation of mechanical information.
Although the present work used passive whisker deflections,

we expect the neural coverage of the stimulus space explored
here to remain stable regardless of whether exploration is active
or passive. The representation of a stimulus by a Vg neuron cannot
depend on context, as the Vg contains no interneurons and re-
ceives no descending inputs. However, a Vg neuron’s response will
depend strongly on the particular mechanical stimulus, and thus
the overall description of Vg activity will be strongly affected by the
range and statistics of the stimuli used. In the present study, neural
responses are likely dominated by rotations of the whisker–follicle
complex because the muscles holding the whiskers are relaxed as
the animal is anesthetized. During active whisking, the muscles
contract around the follicle, resisting passive rotation within the
skin and causing the whisker to bend rather than rotate (18, 43). In

Fig. 6. Mathematical methods schematic: an illustration of the mathe-
matical and modeling methods (1). The 3D whisker shape is extracted from
each video frame and viewed from a whisker-centered coordinate system.
From the 3D whisker shape, we measure the rigid body angular rotations
from rest (Δθ,Δϕ) and estimate the applied force using a 3D mechanical
model of whisker bending (24). The applied force can be decomposed into
the component forces at the base of the whisker; knowledge of the contact
point allows for the computation of component moments. These mechanical
quantities and their derivatives define a 16-dimensional stimulus space (X).
(2) A toy example stimulus space composed of just three dimensions. We fit
low-dimensional GLMs to match the observed spiking of each neuron. Each
GLM finds a lower dimensional subspace embedded in the higher dimen-
sional stimulus space. This subspace, shown here as the plane K1 (yellow),
provides a representation of the stimuli that explain the firing of the neuron
1 (3). We compute the similarities between the neural representations of
different neurons by calculating the angles between the corresponding
neural representational subspaces (K1,K2).
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addition, increases in blood pressure in awake animals will tend to
stiffen the follicle near the ring sinus, increasing the effects of the
whisker’s deformation (44, 45). These differences in mechanical
signals will affect the stimulus space; for the awake animal, bending
is likely to be more prominent during active whisking. However,
the neural representation of the mechanical space itself ought to
remain unchanged. More central neurons could extract features of
the stimulus from a tiled and distributed representation in the Vg
population while accounting for the invariance of the map from
stimulus space to Vg neural activity across passive and active
contexts.

Adaptation Characteristics of Vg Neurons Lie along a Continuum. Vg
neurons are typically classified as RA and SA. This classification
is conceptually intuitive, simplifies analyses, and is consistent with
the existence of genetically and physiologically distinct mechano-
receptor types (46–48). However, during the more naturalistic
stimulation used here, we observe a continuous distribution of
adaptation properties that depend on direction (Fig. 3). This
finding supports earlier interpretations of noncategorical adapta-
tion responses (12, 32, 33).
One interpretation of this finding is that Vg neurons respond

both to mechanical features and their temporal derivatives with
differential weights, such that some neurons respond very little
to derivatives (SA-like) and others exclusively so (RA-like). The
precise balance of these weights is likely affected by various as-
pects of follicle configuration: the physiological class of the
mechanoreceptors, the arrangement and location of the mech-
anoreceptors in the follicle, and the tissue dynamics of the follicle/
mystacial pad (43, 49). The diversity within and across classes of
mechanoreceptors likely generates diverse responses in the Vg
population, resulting in a more complete tiling of the possible
stimulus space and thus avoiding gaps in the information conveyed
to more central neurons (50, 51).

On the Plausibility of a Dense Code. To fully describe the trigeminal
population code would require simultaneous recordings from
many Vg neurons. In this study, Vg neurons were individually and
sequentially recorded from different animals. Nonetheless, several

lines of reasoning suggest that the most parsimonious interpreta-
tion of the present results is that the population of Vg neurons
represents the stimulus space via a dense or nearly dense code.
First, each Vg neuron responds to many different mechanical

states of the whisker (Fig. 5) and to many stimulus features (Fig.
2); many Vg neurons are thus required to fully represent any
given stimulus and any given stimulus feature. Second, Vg coding
properties are continuously distributed across all recorded neu-
rons (Figs. 3 and 7). Direction selectivity index, temporal adap-
tation patterns, alignment of the neural representation with the
stimulus PCs, and alignment between neural representations all
vary smoothly across the entire population of recorded neurons,
indicating a tiling of the input space. Finally, Vg neurons exhibit
a wide range of firing rates (Fig. 2) (12, 16, 32) consistent with a
dense coding scheme (52).
Vg neurons must represent a large range of mechanical stimuli

in multiple behavioral contexts, including active and passive
touch, texture discrimination, collisions with objects, noncontact
whisking, and airflow exploration (19, 53–55). Although it is not
possible to sample all whisker velocities and vibration patterns,
the present work leverages manual stimulation and stereo vide-
ography techniques to explore and quantify a vastly larger
stimulus set than previously reported. It will be crucial for future
work to determine how the tuning properties of these neurons
encode dynamic interactions with complex objects that give rise
to fine-scale deformations such as slip-stick events and texture
exploration; it remains to be seen how Vg neurons achieve ro-
bust encoding under such varied contexts and behaviors. We
quantified the 3D motion of the whisker during deflections ap-
plied at multiple locations along the whisker length and with larger
displacement angles than previous passive stimulation experiments.
This approach allowed us to analyze Vg responses to deflections
that occur during natural exploration but are mostly impossible for
a head-fixed animal, such as dorsal ventral deflections.
Future studies may investigate how the encoding properties

described here coexist with Vg neurons’ ability to encode texture
and self-motion. A dense coding scheme such as the one pro-
posed here would offer several distinct advantages. It is robust to
noise in individual neurons and to neuronal loss. It has a high
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representational capacity, a useful property given that there are
only about 200 to 300 Vg neurons per whisker (56). A distributed
dense code would allow for individual Vg neurons to be infor-
mative of stimuli under different contexts, without filtering out
information at this early stage. In this way, the Vg population
could represent arbitrary stimuli in the space of all possible
stimuli and allow for more central neurons to extract those
features that are relevant in the context of the animal’s ongoing
behavior and motor actions.

Methods
All procedures involving animals were approved by the Northwestern Animal
Care and Use Committee. A total of 22 female Long Evans rats between 3
and 6 mo were used. Detailed data processing methods can be found in
SI Appendix.

Surgical Procedures and Electrophysiological Recordings. Animals were anes-
thetized with a ketamine–xylazine–acepromazine mixture administered in-
traperitoneally (60.0 mg/kg ketamine, 3.0 mg/kg xylazine, and 0.6 mg/kg
acepromazine). After deep anesthesia was induced, the fur from the left
whisker array was removed with depilatory cream (Nair) to increase contrast
near the proximal region of the whisker close to the basepoint. Care was
taken to minimize contact between Nair and the whiskers and to wash off
the Nair as soon as possible with saline. If the shape of a whisker was visibly
altered by the fur removal procedures, it was removed from the array prior
to recordings.

The head was immobilized with ear bars to a custom stereotaxic device,
and three stainless steel skull screws were inserted on the dorsal aspect of the
cranium. Prior to the surgery, a noninsulated silver wire had been soldered to
one of the skull screws to serve as a ground wire for electrophysiological
recordings.

An ∼1 mm diameter craniotomy was made over the left hemisphere,
2 mm caudal to bregma and 2 mm lateral to the midline. The skull was
leveled to ensure that the bregma–lambda plane was horizontal, and a
dental cement (methyl methacrylate) “bridge” was formed to connect the
skull screws to the right side of the stereotaxic device. This procedure
allowed for removal of the bite support and left ear bar while maintaining a
level head position, giving free access to the left whisker array for stimula-
tion. Once the dental cement bridge had set, a single tungsten electrode
(FHC 1 to 3 MΩ) was centered over the craniotomy and lowered to a depth
of ∼10 mm, until whisker-responsive field potentials could be heard in audio
monitoring of the amplified electrode signal during manual stimulation of
the entire whisker array. We then waited ∼5 to 10 min to allow the brain to
relax after the initial penetration before advancing slowly to isolate a unit
that responded only to the deflection of a single whisker.

Once a single unit was isolated, the whisker associated with that neuron
was visually isolated to ensure high contrast in both front and top camera
views. A white paper background was placed behind the whisker to provide a
uniform background for robust tracking in the front camera. Surrounding
whiskers were either trimmed or placed carefully behind the paper back-
ground. Care was taken not to deform the whisker of interest or the
surrounding mystacial pad.

A custom light-emitting diode (LED) sheet with a transparent white
plexiglas diffuser was used as the background lighting for the top camera.
An adjustable Neewer CN-160 LED array was used as foreground lighting in
the front camera field of view. High-speed video from two identical top and
front cameras was recorded directly at either 300 fps (Teledyne Dalsa
HM640) or 500 fps (Mikrotron 4CXP) using StreamPix 7. The front and top
cameras were synchronized by way of clocked 5V transistor–transistor logic
(TTL) to initiate exposure of each frame in both cameras from the same
source. At the end of each experiment, we recorded images of a checker-
board pattern with 2-mm squares in the field of view of both cameras; these
images were later used for camera calibration and for calculating the 3D
whisker shape.

Neural signals were amplified using a A-M systems 4 channel amplifier,
with a 10 Hz to 10 kHz hardware filter, at 1,000× gain. Amplified signals
were acquired via a Measurements Computing DT304 card using Datawave
SciWorks version 8. After acquisition, signals were digitally bandpass filtered
at 300 to 6,000 Hz before spike sorting with KlustaKwik (57).

During recording, whiskers weremanually deflectedwith a graphite probe
(0.3 mm diameter) in eight cardinal directions with respect to the emerging
axis of the whisker. Deflections were applied at two to three distances along
the whisker (arclengths), and at approximately two speeds, for a total of ∼32
to 48 different categories of deflection. Each category of deflection was

repeated ∼20 times for each whisker. Care was taken to minimize slip along
the length of the whisker during a deflection. Neural signals and subsequent
stimulus quantifications were analyzed using custom python and MATLAB
code based on the neo and elephant python packages.

3D Mechanical Models. The mechanical models used here to calculate the
three components of force and three components of moment at the base of
the whisker have been described previously (58). All calculations were done
in whisker-centered coordinates in which the whisker basepoint is centered
at the origin, and the whisker is rotated such that the approximately linear
portion of the base segment of the whisker is colinear with the x-axis and
the initial curvature of the whisker lies in the x-y plane. Mechanical models
take the 3D shape of the whisker in the frame prior to each contact onset as
the reference whisker for that contact. In each subsequent contact frame
during which the whisker is deformed, we estimated the forces and mo-
ments required to deform the reference whisker into the whisker shape
observed during contact.

As described in previous studies (24, 39, 58), the mechanical model ap-
proximates the whisker as a tapered, truncated beam. The three compo-
nents of force and three components of moment {Fx , Fy , Fz,Mx ,My ,Mz} (SI
Appendix, Fig. S1) were computed at the base of each whisker. Importantly,
these computations were performed in whisker-centered coordinates for
each frame so that the applied force takes into account only the change in
shape of the whisker (i.e., bending). To calculate the rotational component
during whisker deflection, we computed the rotation (θ,ϕ) required to move
the whisker from the camera-centered reference frame to the whisker-
centered reference frame at every point in time. The rotation magnitude
in each frame was then computed as the change in these angles (Δθ,Δϕ)
from the position of the whisker in the frame prior to contact. Marginal
distributions of mechanical and kinematic variables are shown across all
contacts and whiskers in SI Appendix, Fig. S2.

In some cases, we used two additional scalar quantities: the magnitude of
the bending moment MB and the rotation magnitude MR, which quantifies
the arc swept in the direction of rotation:

MB =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
M2

y +M2
z

√
,

MR =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Δθ2 + Δϕ2

√
.

2D Mechanical Models. In order to assess the amount of information gained
when moving from 2D to 3D, we calculated the mechanics resulting from the
bending and rotation of the whisker as if we only had information from
the top camera. Since the reconstruction of the 3Dwhisker is an estimation of
the 3D shape, it was inappropriate to simply compare the 3D information
with the information obtained from direct 2D tracking from the top camera,
as the latter is likely more accurate. Instead, we back projected the estimated
3D whisker onto the top camera to get a 2D image of the whisker of
comparable quality to that of the 3D reconstruction. The contact point was
the same node along the whisker as identified during the 3D analysis and did
not need to be recomputed.We used the back-projected 2Dwhisker shape to
calculate the angular rotation Δθ as for the 3D models but now restricted to
the 2D projection. We then applied a previously described 2D mechanical
model (59, 60), analogous to the 3D model already discussed, to calculate
the bending magnitude M, the axial force Fx directed into the follicle, and
the lateral force Fy. The derivatives of these physical quantities were calcu-
lated as described for the 3D mechanical quantities. The resulting eight-
dimensional stimulus space included {M, Fx , Fy ,Δθ} and their respective
derivatives.

Low-Dimensional Tuning Maps. Similar methods were used to calculate tuning
maps in one and two dimensions. In one dimension, the stimulus variable was
binned into 25 equal bins; in two dimensions, each of the two stimulus
variables was binned into 50 equal bins. The resulting histograms sample the
prior probability distribution of the stimulus marginalized to the corre-
sponding one or two dimensions within the 16-dimensional stimulus space.
Bins for which the corresponding stimulus value was observed less than
10 times were considered empty. For occupied bins, normalized counts were
used to estimate the prior probability distribution of the stimuli.

The evoked firing rate of the neuron being mapped was then computed
for all occupied bins. The time-dependent spike rate was estimated by
convolving the binary spike train with a Gaussian kernel with σ = 2 ms. For
such small σ, conversion to a rate provided smoothing without greatly al-
tering the temporal information. These rates were used to create a new
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histogram that estimated the expectation value of the firing rate given the
stimulus. To this end, an average spike rate for each stimulus bin was
computed over all the times a stimulus value within that bin was observed.

GLMs. The input space available to a model for predicting the firing re-
sponse of a specific neuron was the 16-dimensional space consisting of
{Mx ,My ,Mz, Fx , Fy , Fz,Δθ,Δϕ} and the temporal derivatives of these quanti-
ties. Each input variable was sampled at 1 ms resolution. The target output
for training each neuron-specific model was the corresponding binary spike
train recorded during the experiment: either a spike was observed (1) or not
(0) in each 1 ms bin.

The input X(t) consists of the values of the 16 stimulus variables at the
time t of prediction. Since Vg neurons are known to respond to stimulus on
fast time scales, sometimes less than 1 ms, and since the temporal resolution
of the stimulus is the same as the temporal scale of the Vg response, the
model does not need to incorporate a time lag between inputs and outputs
or a stimulus history as has been the case in previous applications (29, 61).
The models implemented here were constructed using cylindrical basis
functions (25):

r̂(t) = g(f1(KT
1X(t)) + f2(KT

2X(t)) + f3(KT
3X(t))).

Here, X(t), the stimulus input at time t, is projected onto filters Ki , 1≤ i≤ 3.
Each filter is a 16-dimensional vector of weights assigned to each component
of X; each fi is a nonlinearity that maps the corresponding projected stimulus
into a firing rate. The function g(x) = ex is the inverse link function for a
Poisson GLM. The functions fi(xi(t)), 1≤ i≤ 3,each a nonlinear function of a
single scalar xi(t) = KT

i X(t), were parametrized as the linear combination of
five cylindrical basis functions (25):

fi(xi) = ∑5
j=1

αij ϕj(xi), withϕj(xi) = exp
⎧⎨⎩ −

(xi − μij)
2 σ2

⎫⎬⎭.
These cylindrical basis functions allow for nonlinear relationships be-
tween mechanical stimulus features and firing rates. The coefficients
αij{ }, 1≤ i≤ 3, 1≤ j≤ 5 that control the linear combinations of cylindrical basis
functions as well as the additional model parameters {Ki}, 1≤ i≤ 3 that specify

the neural filters were fit to minimize the negative log likelihood of the ob-
served spike train given the observed stimulus. Spike history terms were
omitted from the model for the following reason: since Vg neurons are silent
without stimulation and since our stimulus was applied intermittently and had
strong autocorrelation, the best predictor of neural firing was the presence of
a spike in recent preceding time. This led to large positive weights on the spike
history term, which overwhelmed all stimulus-driven response in many neu-
rons. All models were 10-fold cross-validated; 90% of the data were used for
parameter fitting, and the resulting model was used to predict r̂ for the
remaining 10% of the data. This was repeated 10 times, so that every 1-ms bin
for which r̂ is predicted was at some point not part of the training data used to
specify the parameters of the predictive model. Subsequent analyses of the
filter weights {Ki}, 1≤ i≤ 3 for each neuron were performed on mean values
obtained by averaging across the 10 cross-validation instances.

For the dropout analysis to establish the relevance of the various input
components, we fitted the corresponding predictive models as described
above after removing some classes of input components. We found no ev-
idence of overfitting because of too large a parameter space; for instance, the
model with the fewest number of parameters (the rotation only model, with
only four input components) performed as well as the full model, while other
reduced models showed poorer performance than the full model. Models for
the 2D whisker description were constructed in the same manner but based
on an eight-dimensional input space that included {M, Fx , Fy ,Δθ} and their
temporal derivatives.

We also investigated an alternative approach to modeling the input–
output relation of individual neurons, the “spike-triggered mixture model”
(26), based on similar input spaces and employing similar parameters. The
results were both qualitatively and quantitatively similar; details about these
models and their corresponding results are available on request.

Data Availability. Data will be made available upon request. Analyses were
performed in MATLAB and Python using custom modules and scripts. This
software is available upon request.
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